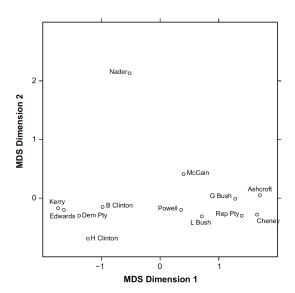
Measurement, Scaling, and Dimensional Analysis 2019 ICPSR Summer Program

Adam M. Enders

Department of Political Science University of Louisville

June 25, 2019


Goal of Course

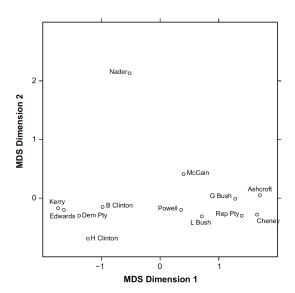
- Explore a family of techniques that will help us better measure the things we're interested in
 - Students will (hopefully) walk away with a better sense of:
 - 1. What it really means to measure something
 - 2. How to go about measuring social phenomena in a deliberate, theoretical, and empirically rigorous way
 - 3. How to lend substantive interpretations to measurements and convince others of those interpretations

What is Scaling?

- People speak about scaling analysis as if its a single method called "scaling"
- There is a commonality to the methods we label "scaling"
 - ► They are all geometric representations of data
- The models themselves provide information about the substantive processes that produce the data (DGP in some sense)
- Producing geometric structures lies at the heart of everything we'll be doing

Example: 2004 ANES Feeling Thermometers

Four main objectives (in no particular order)


1. Data reduction

- We live in an information age and we're confronted by big data that is hard to examine in raw form
- ▶ 1000s of units on 100s or 1000s of variables
- Information is useless if we can't comprehend it
- So, we reduce data down, distill it, from an incomprehensible mass to some digestible that also retains the interesting, important properties of the original data
- Examples
 - Principal components analysis
 - Factor analysis is used this way, but sort of a misuse
 - Likert scales/additive scales

Example: 2004 ANES Feeling Thermometers

wbush	obama	mccain	biden	palin	hclinton	bclinton	rice	limbaugh
85	25	60	15	90	20	20	95	52
60	0	70	50	70	30	0	50	40
85	30	60	50	70	40	40	100	50
70	30	70	50	85	40	30	70	70
70	0	85	50	60	0	0	70	40
85	15	70	50	70	0	0	100	50
70	30	70	15	100	40	30	100	60
0	100	50	60	15	50	70	50	0
60	30	85	15	100	60	40	50	40
85	0	85	50	85	0	0	70	50
100	0	70	50	85	0	0	100	70
70	15	85	15	85	15	50	85	70
70	85	85	100	70	85	70	100	0
30	40	85	100	70	85	85	70	0
85	0	70	0	85	0	0	100	70
40	40	70	50	85	85	70	70	50
30	60	60	85	60	70	85	30	40
30	100	0	70	0	50	85	70	0
0	70	30	70	15	70	70	30	0
40	70	60	70	50	70	85	60	50
60	15	85	30	70	60	40	70	60
100	40	100	40	100	60	50	100	100
60	40	85	50	60	20	30	60	50
0	100	15	60	0	60	40	60	0
30	70	60	50	30	60	60	30	15
70	70	50	50	50	50	50	50	50
25	85	50	50	40	85	100	60	50
1	70	80	80	40	90	100	50	10
25	85	35	90	30	60	75	15	10
0	70	15	60	30	70	15	0	0

Example: 2004 ANES Feeling Thermometers

- 2. Assess the dimensionality of the information we're analyzing
 - We try to understand the number and nature of the distinct sources of variability in a set of data
 - Think about market researchers trying to figure out what aspects of breakfast cereal people pay attention to when buying cereal
 - Cost, the box, sugar content, organic, where its produced?
 - These are all potential sources of variability in people's behavior when it comes to purchasing cereal
 - Assessing dimensionality is a way of figuring out which of those distinct sources of variability is actually present in people's minds

- We use dimensionality analysis to separate the interesting and important sources of variability from the other potential sources of variability (error) that don't matter/aren't interesting/important
 - Error isn't mistakes, just information that isn't useful or interesting
- Deal with the "curse of dimensionality"
 - The useful thing about making geometric representations is that they can be represented visually very nicely
 - The problem: we can't see into more than 3-4 dimensions very easily
 - Analytically we aren't limited by the curse of dimensionality. We can engage n-1 dimensions. But we can't produce graphical representations beyond 3-4.

3. Measurement

- Extremely powerful measurement tools
- Can extract information from incomprehensible data measured at ordinal and nominal levels and produce comprehensible interval level information
- Example: Likert scales
 - Likert scales take ordinal information and produces an interval level scale
- Measurement is, itself, a theory and theories are meant to be tested
- Scaling methods are ways of testing those theories about our measures

4. Statistical graphics

- All methods we use are amenable to being represented in pictorial form
- ► A picture is worth 1000 words worth 1000 numbers too
- Visualizing data is extremely useful in communicating our findings to reviewers, editors, colleagues, the public, etc.
 - A lot more powerful that tables of coefficients or equations
- Science is an inherently social enterprise visualizing data via statistical graphics makes the socializing, the communication more efficient and easier.

Who Are We?

- Instructor: Adam Enders
 - Assistant professor of political science
 - University of Louisville
 - Public opinion and political behavior research
 - Substantive research interests:
 - Conspiratorial thinking
 - Polarization
 - Partisanship and ideology
 - Methodology interests:
 - Latent variable modeling of all sorts (particularly IRT and MDS)
 - In addition to class: SEM, differential item functioning, optimal scaling
- Teaching Assistant: Tyler Girard
 - Graduate student, political science
 - University of Western Ontario
 - Interests in international political economy, norms

Who Are You?

- 1. Name
- 2. Affiliation (university, department, employer...whatever makes sense)
- 3. Field of study/work
- 4. Why are you interested in the course?
 - ▶ What methodologies are you most interested in?
 - What does your work look like, what problems are you trying to solve?
 - ▶ Is there anything relevant to class that isn't on the syllabus?

Course Material

- Course webpage: www.adamenders.com/teaching
 - Click "Scaling and Dimensional Analysis"
 - ▶ Password: "ICPSR2019"
- Will post slides, data, code, and homework assignments
- Please do not share course materials with non-participants

See course syllabus for more information

Summer Program Details

- Figure out what's useful to you and do that
 - ▶ Don't worry about what course(s) you initially registered for
 - Spend the first day or two exploring different courses, but make selections after that
 - Three courses is tough; wouldn't recommend more than two plus supplemental lectures

Lectures

- Blalock Lectures: in evening, topical
- Mathematics for Social Scientists: recommend II (focus on matrix algebra), if any
- R lectures tonight through July 6 @ 5:30 PM: recommend if no prior experience with R

Office hours

- Most faculty (myself included!) are more than happy to discuss research projects
- ► Find a way to apply course material to your interests, your data get a paper out of it!

Questions???