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Objectives

e Account for, or represent, variability in a set of objects using a
single dimension

» That is, there is only one source of important or substantively
interesting variability among a set of data

e Also want the resultant estimate of the dimension to be
statistically reliable — more reliable than employing each
individual item used to estimate the dimension

o If we achieve these two objectives, we will also have “better”
measured the construct of theoretical interest
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The Summated Rating Model

e Some people call them Likert (pronounced “lick-ert") scales,
additive indexes (scales)

» Note: Likert scale # Likert response format!!!!

e Start with an n x k rectangular matrix of dominance data

» Each variable, v, is an imperfect measure of some
characteristic

» Each variable v, is measured on the same scale
e General Procedure:

» “Collapse” across the columns to end up with a single column
vector of scores (calculate the mean within each row, or could
calculate the sum)

» If you have k items with m categories, the scale will have
k(m — 1) + 1 distinct scores

» Thats it!

3/29



Substantive Examples

e Racial resentment

e Political knowledge

e Political participation

e Values

e Issue attitudes

e Supreme Court legitimacy

e Partisanship (the Huddy and Greene social identity measures)
e Government spending preferences

e Racial stereotypes

e ANYTHING that is composed of several “indicator” variables
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The Summated Rating Model, cont'd

e It is equally possible to collapse across rows to get summary
scores for the column objects
» Might want to do this in order to learn something about the
column objects
e Want to use this when you want to measure the variability in
one set of objects (columns or rows) and not another
e We lose the information about the variability of the individual
items when we use this model
e Most appropriate to use this when we want to measure a
dimension we are pretty sure exists — they are not good for
testing dimensionality
» These models are prone to false positives — supporting a
dimension when it doesn't exist
e A successful application of the summated rating scale
generates an interval-level estimate of the underlying
dimension from ordinal-level variables
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The Summated Rating Model, cont'd

e Classical Test Theory: a psychometric theory of item response
where responses can be broken down into “true scores” and
(random) error

» Also concerned with improving reliability of measurements, as
we'll see shortly

e Some terminology:

» T: "true” underlying dimension
» Vi, j=1,2... k: item
» X: the scale formed from the V;'s

e Each item in an SRS is associated with a trace line/item
characteristic curve/item response function

» A trace line is a graph of E(V}) for each position along T

» There will be k different trace lines (that is, one of these
graphs for each item)

» We can't empirically construct these graphs, though — we
don't know T!
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Model Assumptions

e Single assumption of this model: trace line for each item is
monotonic with respect to the underlying dimension T (called
the monotone homogeneity assumption)

» These monotonic curves are the measurement functions of
each of the individual items (since they are monotonic, its
equivalent to say that we are working with ordinal items)

> X = Zj;l Vjj : this is equivalent to summing across the trace
lines

» Taking E(Zj’f:l Vj;) will cancel out the idiosyncrasies in the
trace lines, leaving us with a linear trace line, or, an
interval-level estimate
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ltem Analysis

e Most people do not check the single assumption listed above:
need to perform an item analysis

e Item analysis consists of checking the monotonicity of the
trace lines associated with each item by plotting each variable
involved in the scale against the true dimension

» Again, this is difficult because we don't have T

* So, we examine bivariate relationships between the Vj's and X
— most people correlate the item with the scale r(V;, Xj)
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ltem Analysis, cont'd

e Problem: the correlation is biased upward if we correlate the a
given item and a scale including the item

> Need to correlate the item with a scale that excludes that item
r(Vj, X_;j), called the rest score

» All correlations should be positive, but the correlation need not
be large or statistically significant (since each of the Vj's are
measured with error, which attenuates correlation coefficients)

» Furthermore, correlation coefficients in this instance are a
measure of the linear relationship between the item and the
true dimension; BUT, we only want to assume monotonicity,
not linearity!

e Solution: fit a smoother to a scatter plot of V; against the
scale X_;

9/29



Why use a scale in the first place?

Why not just find the item with the “straightest” trace line?

Consider the following: V; = T + ¢;, the response of an
individual to item V; is comprised of the their true ideal point
T and measurement error, ¢;

e We are going to assume that over repeated trials E(e;) =0

Multiple items help us reduce the net effect of error
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Reducing error

(Note, | have dropped the i subscript below for simplicity):
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Reducing error

e The scale score is a composite of the true score and the
sample mean of the error (which should be close to 0)

e The Central Limit Theorem also tells us that the variance of

- 2 -
the error, og, is equal to U—k‘f when we have k items

e So, error variance reduces as the number of items, k,
increases (or, when we increase “scale length")

e This is why we use multiple-item scales!

» To be clear: multiple item scales are always more reliable than
single items

» One of the best practices you can adopt when it comes to
quantitative analysis is always employing multiple item
measures (i.e., scales) of key variables of interest

» If there aren’t any in your field, develop one!
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Reducing error

Let's assume: E(e;) =0, COV(e;, T;) =0, and COV/(ej,e) =0

=

Xi=> Vi=Ti+e

j=1
Xi=Ti+e
E(X,) = E(Ti + e,-)
E(X;))=T,;
VAR(X;) = VAR(T; + E;)
= VAR(T;) + VAR(E;) + 2COV/(T;, E;)

L VAR(
VAR(

Ti) VAR(E;)
X) " VAR(X)
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Reliability

VAR(T) = the reliability of X

> It is the proportion of variability in the scale scores not due to
error (or, alternatively, variance that can be attributed to the

true scale)

o Reliability can be thought of as the squared correlation (R% )
between the scale scores and the “true,” underlying scale

e The "tightness” or “compactness” of the data points around
the best fitting trace line of the scale scores to the true scores
is greater when there is a larger number of items
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Parallel Measures

e So how can we calculate reliability if we don't have T (in fact,
if we had T we wouldn't need to construct the scale!)?

e Need parallel measures

e Take X, X* and X*™* to be separate empirical scales, all of
which measure T

¢ Following previous material:

» Xi=Ti+E
> X* =T +Er
> Xi** _ T,+El**
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Parallel Measures, cont’'d

e X, X* and X** are parallel measures if the following
conditions hold:
1. E(X)=E(X*)= E(X**)=E(T)
. UX :O-X* :Ux**

2
3_ UX,X* = OX,X** = UX*7X**
4. oxy = 0x+y = 0x== vy, Wwhere Y is some other variable, not

a measure of T

e Part of 1, and 2-4 are empirically testable
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Parallel Measures, cont’'d

Now, consider correlation between two parallel measures:

OX,X*

OXOX*
O(T+E)(T+E*)

O X0 X*
O(T?>+TE+TE*+EE*)

OXOXx*
o2 +0TE + O0TE* + OFE*

OXOX*

PX X+ =

o _—
PX X+ = —;— — reliability
Ox
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Where do We Get Parallel Measures?

e One source of a parallel measure is using a scale constructed
at some other point in time (repeated measures over time)

e Some obvious problems:
> Need panel data
» The true scale scores could have changed over time, which

would affect your inferences
> Really, need at least 3 measures to be sure change isn't due to

real change
e Easy method of calculating reliability with panel data
produced by Heiser (1969) and further developed by Wiley
and Wiley (1970)
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Estimating Reliability from Panel Data

e X is a summated rating scale that is assumed to measure
some underlying “true” dimension, T

e Assume that we have three-wave panel data that provide us
with three successive values of X for the same observations

e Denote the scale scores and true scores at time point j as X;
and T; , respectively, with j =1,2,3
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Estimating Reliability from Panel Data, cont'd

T

a, d, and e are coefficients to be estimated while ri5, 3, and r3
are empirical correlations between the scale scores across the three

waves of the panel

T,

Ty
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Estimating Reliability from Panel Data, cont'd

e The rules of path analysis can be used to express the
correlations as functions of the coefficients, as follows:
> np = 32d
> 3 = a’e
> 3 = a’de
e |t follows, then, that:
2 __ nons

a3 =
r3

d=1

e =

v vy

r3
ns

2
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An Example: Party ldentification

e Though never referred to this by the authors of The American
Voter (1960), partisanship has subsequently been colloquially
referred to as the “unmoved mover”

e This implies stability, which itself implies relatively high
reliability

(1) (2) (3)
(1) Party IDgp 1.000
(2) Party IDgs ~ 0.800  1.000
(3) Party IDgs 0772 0.857  1.000

2_ 0800 <0857  hogs 4972 901 o= 272065

0.772 0.857 0.800
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Where do We Get Parallel Measures?, cont'd

e Equivalence strategy: two simultaneous measures of T

» Split-half measure: divide items in half, construct two scales,
and correlate them

m Problem: if we divide the number of items in half, we will have
an inherently biased (downward) measure of scale reliability

m Spearman-Brown Prophecy formula will correct for reduced
items: ree oo = 12Trr

m Problem: there are lots of way we can divide the items in half

m Could take the mean split-half correlation to correct this, but
this would take a long time because you would have to

construct all the scales

» Cronbach’s a: mean split-half correlation corrected for scale
length
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Cronbach’s Alpha

Typical formula:

kr

T IrAk—1)

where ¥ = mean correlation

This is a lower-bound estimate of the true reliability of the
scale (not always a bad thing!)

It underestimates because:

1. We typically do not have perfectly parallel measures
2. Our trace lines only require monotonicity

Rest scores tell us how a: changes when a given item is
removed from the analysis — if « increases, that item probably
doesn't belong in the model
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Perils of Cronbach’s Alpha

Alpha should NOT be used a measure of internal consistency or
homogeneity

«

Vi: —
Vo: 090 —
Vs: 090 090 —
Vy: 0.00 0.00 0.00 —
Vs: 0.00 0.00 0.00 090 —
Ve: 0.00 0.00 0.00 0.90 090 —
i Vv Va Vi V5 W
_ _kr _ 6 x 0.36 _ 2.16 077
1-7r(k—1) 1+(5x0.36) 2.80
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Perils of Cronbach’s Alpha

Alpha also increases as k increases, regardless of average
correlation, r

Say we have a large scale with k = 30, but a small average
correlation 7 = 0.075

kr 30 x 0.075 2.25

CTI-Fk—1) 1+(29x0075) 3.175

=0.709

Used a measure of internal consistency, we would accept this as a
“good” scale with items that “go together” — this is clearly not the
case
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Perils of Cronbach’s Alpha, cont'd

e Alpha is smaller than the greatest lower bound

» alpha < GLB < px x-
» Other types of reliability estimates that are perfectly good

(e.g., Guttman’'s Xy, which is larger than « but smaller than
GLB)

e All that said: most people only know Cronbach's alpha and
are going to ask for that during the review process #science

e Citations to Cronbach's 1951 Psychometrika paper outrank
even Watson and Crick’'s 1953 Nature article describing their
discovery of the double helix structure of DNA
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Application: Ansolabahere et al. (2008)

FIGURE 1. Correlation Between 1990 and 1992 Economic Issue Scales Box-and-Whiskers Plot
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Application: Ansolabahere et al. (2008)

TABLE 4. Correlations Between ANES Panel Waves, Issue Scales, and Individual Survey ltems by

Education and Political Information Level

High-Educ. Low-Educ. High-Info. Low-Info.
Respondents Respondents Respondents Respondents
Issue Indiv. Issue Indiv. Issue Indiv. Issue Indiv.

Issue Area Scales Items Scales Items Scales Items Scales Items
1992, 1996
Economic Issues .81 47 71 .35 .78 45 .68 .30
Moral Issues .86 .58 .75 42 .84 .54 71 .38
Ideology .84 .31 .73 19!
Party ID 77 .79 .81 .76
1990, 1992
Economic Issues .81 .50 74 .36 .78 .46 .68 31
Racial Issues .86 .57 73 48 .82 .54 .68 43
Moral Issues .85 .57 .58 .35 .82 .53 47 .31
Ideology .79 .39 .67 .32
Party ID .83 76 .83 57
1972, 1976
Economic Issues 73 .46 .66 .39 71 .45 .60 .35
Racial Issues .80 44 72 37 .80 47 .69 .32
Womens’ Issues .76 47 .59 .36 .70 .45 .60 .36
Law & Order .82 .61 .63 .45 .78 .58 .58 .36
Ideology .66 .48 .63 56
Party ID .87 71 .83 61
1956, 1960
Economic Issues .62 .47 .58 .39
Party ID .92 79
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