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Objectives

• Account for, or represent, variability in a set of objects using a
single dimension

I That is, there is only one source of important or substantively
interesting variability among a set of data

• Also want the resultant estimate of the dimension to be
statistically reliable – more reliable than employing each
individual item used to estimate the dimension

• If we achieve these two objectives, we will also have “better”
measured the construct of theoretical interest
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The Summated Rating Model

• Some people call them Likert (pronounced “lick-ert”) scales,
additive indexes (scales)

I Note: Likert scale 6= Likert response format!!!!

• Start with an n × k rectangular matrix of dominance data

I Each variable, vk is an imperfect measure of some
characteristic

I Each variable vk is measured on the same scale

• General Procedure:

I “Collapse” across the columns to end up with a single column
vector of scores (calculate the mean within each row, or could
calculate the sum)

I If you have k items with m categories, the scale will have
k(m − 1) + 1 distinct scores

I Thats it!
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Substantive Examples

• Racial resentment

• Political knowledge

• Political participation

• Values

• Issue attitudes

• Supreme Court legitimacy

• Partisanship (the Huddy and Greene social identity measures)

• Government spending preferences

• Racial stereotypes

• ANYTHING that is composed of several “indicator” variables
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The Summated Rating Model, cont’d

• It is equally possible to collapse across rows to get summary
scores for the column objects

I Might want to do this in order to learn something about the
column objects

• Want to use this when you want to measure the variability in
one set of objects (columns or rows) and not another

• We lose the information about the variability of the individual
items when we use this model

• Most appropriate to use this when we want to measure a
dimension we are pretty sure exists – they are not good for
testing dimensionality

I These models are prone to false positives – supporting a
dimension when it doesn’t exist

• A successful application of the summated rating scale
generates an interval-level estimate of the underlying
dimension from ordinal-level variables

5/29



The Summated Rating Model, cont’d

• Classical Test Theory: a psychometric theory of item response
where responses can be broken down into “true scores” and
(random) error

I Also concerned with improving reliability of measurements, as
we’ll see shortly

• Some terminology:

I T : “true” underlying dimension
I Vj , j = 1, 2..., k : item
I X: the scale formed from the Vj ’s

• Each item in an SRS is associated with a trace line/item
characteristic curve/item response function

I A trace line is a graph of E (Vj) for each position along T
I There will be k different trace lines (that is, one of these

graphs for each item)
I We can’t empirically construct these graphs, though – we

don’t know T !
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Model Assumptions

• Single assumption of this model: trace line for each item is
monotonic with respect to the underlying dimension T (called
the monotone homogeneity assumption)

I These monotonic curves are the measurement functions of
each of the individual items (since they are monotonic, its
equivalent to say that we are working with ordinal items)

I Xi =
∑k

j=1 Vij : this is equivalent to summing across the trace
lines

I Taking E (
∑k

j=1 Vij) will cancel out the idiosyncrasies in the
trace lines, leaving us with a linear trace line, or, an
interval-level estimate
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Item Analysis

• Most people do not check the single assumption listed above:
need to perform an item analysis

• Item analysis consists of checking the monotonicity of the
trace lines associated with each item by plotting each variable
involved in the scale against the true dimension

I Again, this is difficult because we don’t have T

• So, we examine bivariate relationships between the Vj ’s and X
– most people correlate the item with the scale r(Vj ,Xj)
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Item Analysis, cont’d

• Problem: the correlation is biased upward if we correlate the a
given item and a scale including the item

I Need to correlate the item with a scale that excludes that item
r(Vj ,X−j), called the rest score

I All correlations should be positive, but the correlation need not
be large or statistically significant (since each of the Vj ’s are
measured with error, which attenuates correlation coefficients)

I Furthermore, correlation coefficients in this instance are a
measure of the linear relationship between the item and the
true dimension; BUT, we only want to assume monotonicity,
not linearity!

• Solution: fit a smoother to a scatter plot of Vj against the
scale X−j
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Why use a scale in the first place?

• Why not just find the item with the “straightest” trace line?

• Consider the following: Vj = T + ej , the response of an
individual to item Vj is comprised of the their true ideal point
T and measurement error, ej

• We are going to assume that over repeated trials E (ej) = 0

• Multiple items help us reduce the net effect of error
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Reducing error

(Note, I have dropped the i subscript below for simplicity):

Vj = T + ej
k∑

j=1

(Vj) =
k∑

(T + ej)

∑k
j=1(Vj)

k
=

∑k(T + ej)

k

X =
kT

k
+

∑k ej
k

X = T + ē
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Reducing error

• The scale score is a composite of the true score and the
sample mean of the error (which should be close to 0)

• The Central Limit Theorem also tells us that the variance of
the error, σ2e , is equal to σ2

e
k when we have k items

• So, error variance reduces as the number of items, k ,
increases (or, when we increase “scale length”)

• This is why we use multiple-item scales!

I To be clear: multiple item scales are always more reliable than
single items

I One of the best practices you can adopt when it comes to
quantitative analysis is always employing multiple item
measures (i.e., scales) of key variables of interest

I If there aren’t any in your field, develop one!
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Reducing error

Let’s assume: E (ei ) = 0, COV (ei ,Ti ) = 0, and COV (ei , ej) = 0

Xi =
k∑

j=1

Vij = Ti + ei

Xi = Ti + ei

E (Xi ) = E (Ti + ei )

E (Xi ) = Ti

VAR(Xi ) = VAR(Ti + Ei )

= VAR(Ti ) + VAR(Ei ) + 2COV (Ti ,Ei )

1 =
VAR(Ti )

VAR(Xi )
+

VAR(Ei )

VAR(Xi )
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Reliability

• VAR(T )
VAR(X ) = the reliability of X

I It is the proportion of variability in the scale scores not due to
error (or, alternatively, variance that can be attributed to the
true scale)

• Reliability can be thought of as the squared correlation (R2
X ,T )

between the scale scores and the “true,” underlying scale

• The “tightness” or “compactness” of the data points around
the best fitting trace line of the scale scores to the true scores
is greater when there is a larger number of items
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Parallel Measures

• So how can we calculate reliability if we don’t have T (in fact,
if we had T we wouldn’t need to construct the scale!)?

• Need parallel measures

• Take X , X ∗ and X ∗∗ to be separate empirical scales, all of
which measure T

• Following previous material:

I Xi = Ti + Ei

I X ∗
i = Ti + E∗

i
I X ∗∗

i = Ti + E∗∗
i
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Parallel Measures, cont’d

• X , X ∗ and X ∗∗ are parallel measures if the following
conditions hold:

1. E (X ) = E (X ∗) = E (X ∗∗) = E (T )
2. σ2

X = σ2
X∗ = σ2

X∗∗

3. σX ,X∗ = σX ,X∗∗ = σX∗,X∗∗

4. σX ,Y = σX∗,Y = σX∗∗,Y , where Y is some other variable, not
a measure of T

• Part of 1, and 2-4 are empirically testable
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Parallel Measures, cont’d

Now, consider correlation between two parallel measures:

ρX ,X∗ =
σX ,X∗

σXσX∗

=
σ(T+E)(T+E∗)

σXσX∗

=
σ(T 2+TE+TE∗+EE∗)

σXσX∗

=
σT 2 + σTE + σTE∗ + σEE∗

σXσX∗

=
σ2T

σXσX∗

=
σ2T
σXσX

ρX ,X∗ =
σ2T
σ2X
−→ reliability
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Where do We Get Parallel Measures?

• One source of a parallel measure is using a scale constructed
at some other point in time (repeated measures over time)

• Some obvious problems:

I Need panel data
I The true scale scores could have changed over time, which

would affect your inferences
I Really, need at least 3 measures to be sure change isn’t due to

real change

• Easy method of calculating reliability with panel data
produced by Heiser (1969) and further developed by Wiley
and Wiley (1970)
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Estimating Reliability from Panel Data

• X is a summated rating scale that is assumed to measure
some underlying “true” dimension, T

• Assume that we have three-wave panel data that provide us
with three successive values of X for the same observations

• Denote the scale scores and true scores at time point j as Xj

and Tj , respectively, with j = 1, 2, 3
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Estimating Reliability from Panel Data, cont’d

a, d , and e are coefficients to be estimated while r12, r23, and r13
are empirical correlations between the scale scores across the three
waves of the panel
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Estimating Reliability from Panel Data, cont’d

• The rules of path analysis can be used to express the
correlations as functions of the coefficients, as follows:

I r12 = a2d
I r23 = a2e
I r13 = a2de

• It follows, then, that:

I a2 = r12r23
r13

I d = r13
r23

I e = r13
r12
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An Example: Party Identification

• Though never referred to this by the authors of The American
Voter (1960), partisanship has subsequently been colloquially
referred to as the “unmoved mover”

• This implies stability, which itself implies relatively high
reliability

(1) (2) (3)

(1) Party ID92 1.000
(2) Party ID94 0.800 1.000
(3) Party ID96 0.772 0.857 1.000

a2 =
0.800× 0.857

0.772
= 0.888 d =

0.772

0.857
= 0.901 e =

0.772

0.800
= 0.965
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Where do We Get Parallel Measures?, cont’d

• Equivalence strategy: two simultaneous measures of T

I Split-half measure: divide items in half, construct two scales,
and correlate them

Problem: if we divide the number of items in half, we will have
an inherently biased (downward) measure of scale reliability
Spearman-Brown Prophecy formula will correct for reduced
items: rx∗,x∗∗ = 2r

1+r

Problem: there are lots of way we can divide the items in half
Could take the mean split-half correlation to correct this, but
this would take a long time because you would have to
construct all the scales

I Cronbach’s α: mean split-half correlation corrected for scale
length
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Cronbach’s Alpha

• Typical formula:

α =
kr̄

1 + r̄(k − 1)
, where r̄ = mean correlation

• This is a lower-bound estimate of the true reliability of the
scale (not always a bad thing!)

• It underestimates because:

1. We typically do not have perfectly parallel measures
2. Our trace lines only require monotonicity

• Rest scores tell us how α changes when a given item is
removed from the analysis – if α increases, that item probably
doesn’t belong in the model
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Perils of Cronbach’s Alpha

Alpha should NOT be used a measure of internal consistency or
homogeneity

α =
kr̄

1− r̄(k − 1)
=

6× 0.36

1 + (5× 0.36)
=

2.16

2.80
= 0.77
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Perils of Cronbach’s Alpha

Alpha also increases as k increases, regardless of average
correlation, r̄

Say we have a large scale with k = 30, but a small average
correlation r̄ = 0.075

α =
kr̄

1− r̄(k − 1)
=

30× 0.075

1 + (29× 0.075)
=

2.25

3.175
= 0.709

Used a measure of internal consistency, we would accept this as a
“good” scale with items that “go together” – this is clearly not the
case
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Perils of Cronbach’s Alpha, cont’d

• Alpha is smaller than the greatest lower bound

I alpha ≤ GLB ≤ ρX ,X∗

I Other types of reliability estimates that are perfectly good
(e.g., Guttman’s λ2, which is larger than α but smaller than
GLB)

• All that said: most people only know Cronbach’s alpha and
are going to ask for that during the review process #science

• Citations to Cronbach’s 1951 Psychometrika paper outrank
even Watson and Crick’s 1953 Nature article describing their
discovery of the double helix structure of DNA
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Application: Ansolabahere et al. (2008)
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Application: Ansolabahere et al. (2008)

29/29


