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Housekeeping

• Blalock Lecture series: “The Promise of Nested Models for
Critical Studies of Race and Racism”

I Who: Abigail Sewell, Sociology, Emory University
I When/Where: 7–9 PM, Angell Hall Auditorium D
I July 9: “Creating Measures of Supraindividual Racism”
I July 10: “Evaluating the Population Risks of Supraindividual

Racism”
I July 11: “Quantifying Intersectionality and Mixed Effects

Models”

• Probably have lab covering PCA and factor analysis on
Friday...
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A Hypothetical Dataset

10 observations on two variables X and Y

i X Y

1 1 4
2 1 7
3 3 9
4 3 12
5 4 11
6 4 12
7 5 17
8 6 13
9 6 18

10 7 17

How might we represent this information visually?
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A Scatterplot of Subjects

The obvious choice is a two-dimensional scatterplot where the
variables are represented by the two axes and subjects are represent
by points
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Mean Centering

Though the location of the origin of the plot doesn’t matter if we
only care about the individual values of X and Y , our life will be
easier in multivariate analyses if we shift the center of the plot to
the origin (0, 0)

We can do this by subtracting the mean of each variable from
every score: xi = Xi − X̄ , yi = Yi − Ȳ

i x y
1 -3 -8
2 -3 -5
3 -1 -3
4 -1 0
5 0 -1
6 0 0
7 1 5
8 2 1
9 2 6

10 3 5
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A (Mean-Centered) Scatterplot of Subjects

A two-dimensional depiction of the mean-centered data
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A Scatterplot of Subjects

Typical scatterplots place emphasis on the observations
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A Scatterplot of Subjects

Typical scatterplots place emphasis on the observations

X.cen

Y.
ce

n

−5

0

5

−3 −2 −1 0 1 2 3

s7

s8

8/61



A Scatterplot of Subjects

Typical scatterplots place emphasis on the observations
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A Scatterplot of Subjects

Typical scatterplots place emphasis on the observations
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Do we really care about subject 7 and 8, though? Or, are we really
interested in the relationships between the variables?
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A Scatterplot of Subjects

It’s hard to get much out of a scatterplot of “real” data

We’re usually interested in relationship between variables – what’s
the correlation here?
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A Scatterplot of Subjects

It’s hard to get much out of a scatterplot of “real” data

We’re usually interested in relationship between variables – what’s
the correlation here?
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A Scatterplot of Subjects

It’s hard to get much out of a scatterplot of “real” data

We’re usually interested in relationship between variables – what’s
the correlation here?
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Abandoning Subjects for Variables

What if we made the subjects (row objects) the axes, so that
variables are represented by points?
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This is a scatterplot of subject 7 vs. subject 8, with the centered
Y and X variables represented as points
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Abandoning Subjects for Variables

Those points are actually terminal points of vectors
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What’s a Vector?

• Definition: a directed line segment emanating from the origin
(0, 0) and terminating at the coordinates of the data
point/observation

• Retains all of the information as the coordinates as long as it
maintains its length and direction (angle)

• Usually helpful to work with vectors of unit length (1, that is)

I We’ll see how that’s useful when we get to particular analyses,
but don’t need to worry too much about it for now
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Variable Space and n-Space

• We are used to representing data in variable space; that is, we
locate observations in a space where variables represent the
coordinate axes

• Can also represent variables in subject space, called “n-space”

• We are going to work with vectors that have centered values:

~x =
[
x1 − x̄ , x2 − x̄ , ...xn − x̄

]
• Which means that:

~x · ~x =
[
(x1 − x̄)(x1 − x̄) + (x2 − x̄)(x2 − x̄)...+ (xn − x̄)(xn − x̄)

]
= (x1 − x̄)2 + (x2 − x̄)...+ (xn − x̄)

~x2 =
n∑

i=1

(xi − x̄)2 ←− length of the variable vector

• The length of the vector tells us the sum of squares, or, the
variance of the vector (which represents a variable)
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Vector Length

• Can also calculate length using the Pythagorean Theorem

I Square of the hypotenuse (the side opposite the right angle) is
equal to the sum of the squares of the other two sides

• Length can be expressed like the following if the mean has
already been subtracted:

|~x | =
√

x21 + x22 + . . .+ x2n

• Remember the two vectors from our example: ~y = [1, 5]′, and
~x = [2, 1]′

• Their lengths are as follows:

|~x | =
√

22 + 12 =
√

5 = 2.236

|~y | =
√

12 + 52 =
√

26 = 5.099
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Relationships in a Right Triangle

• The Pythagorean Theorem holds the following:

|~x |2 + |~z |2 = |~y |2

• Thus, when the lengths of any two vectors are known, we can
easily solve for the length of the third vector

x

z

y
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Arithmetical Operations: Scalar Multiplication

• Scalar multiplication: changes the length of the vector, but
doesn’t change the orientation

• If k is greater than 1 the length increases, if it is less than 1 it
shortens (if it is 1, nothing changes)

• Multiplication by a negative constant k will change the
direction (its now “opposite”), but not the orientation

~x =
[
x1, x2

]
k~x =

[
x1k , x2k

]
• Scalar multiplication of a vector generates a subspace of x

because any constant will leave the vector on the original
collinear line

• Subspace of ~x , ~y is plane, p
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Arithmetical Operations: Scalar Multiplication

Focus on ~y = [1, 5]′
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Arithmetical Operations: Scalar Multiplication

2~y = [2× 1, 2× 5]′ = [2, 10]′

Multiplying by 2 doubles the length of the vector in the current
direction
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Arithmetical Operations: Scalar Multiplication

−2~y = [−2× 1,−2× 5]′ = [−2,−10]′

Same increase in length, just reversed directions
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Arithmetical Operations: Addition

• Addition:

~x =
[
x1, x2

]
~y =

[
y1, y2

]
~x + ~y =

[
x1 + y1, x2 + y2

]
• Geometrically, the sum of two vectors is produced by moving

one of the vectors to the end of the other and drawing the
sum as a vector from the start of the first vector to the end of
the second
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Arithmetical Operations: Addition

~z = ~x + ~y = [2 + 1, 1 + 5]′ = [6, 3]′
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Arithmetical Operations: Addition

~z = ~x + ~y = [2 + 1, 1 + 5]′ = [6, 3]′
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Arithmetical Operations: Subtraction

• Subtraction works just like addition:

~x =
[
x1, x2

]
~y =

[
y1, y2

]
~x − ~y =

[
x1 − y1, x2 − y2

]
~x − ~y is also equal to ~x + (−1× ~y)

• Geometrically, subtraction corresponds to going to the end of
the first vector and moving in a direction opposite to that of
the second vector
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Arithmetical Operations: Subtraction

~w = ~x − ~y = [2− 1, 1− 5]′ = [1,−4]′
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Arithmetical Operations: Subtraction

~w = ~x − ~y = [2− 1, 1− 5]′ = [1,−4]′
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Arithmetical Operations: Linear Combinations

• A linear combination involves both addition and scalar
multiplication

• Regression equations, and as we will see shortly, principal
components analysis, are linear combinations

~z = bx~x + by~y

• Geometrically, the above equation entails moving along ~x for
a distance of bx times its length, then turning in the direction
of ~y for for by times its length
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Arithmetical Operations: Linear Combinations

Continuing with our hypothetical vectors ~x and ~y from before...

~z = bx~x + by~y

= 3~x + 2~y

= 3

[
2
1

]
+ 2

[
1
5

]
=

[
6
3

]
+

[
2

10

]
=

[
8

13

]

31/61



Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Linear Combinations
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Arithmetical Operations: Scalar Product

• Scalar product: scalar number formed by sum of products of
corresponding elements of ~x and ~y

I Also called the “dot product” because the operation is often
represented ~x · ~y

~x~y = x1y1 + x2y2...+ xmym

or

~x~y =
m∑

xmym

I Scalar product of the vector with itself is equal to the length of
that vector

I Length of ~x (which is ~x · ~x): |~x | or ||~x ||
I Scalar product of two vectors is also equal to the cosine of the

angle formed between the vectors: ~x~y = |~x |~y |cosθ~x~y
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Arithmetical Operations: Correlation

• Correlation: corresponds to the cosine of the angle between
two vectors (ie, |~x ||~y |cosθ~x~y )

~x · ~y = |~x ||~y |cosθ~x~y
~x · ~y
|~x ||~y |

= cosθ~x~y

cosθ~x~y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

I Orthogonal vectors (90 degree/right angle) are uncorrelated
(cos90 = 0)

Furthermore, two orthogonal vectors will have a dot product
of 0 (x⊥y = x · y = 0)

I Two vectors forming an acute angle (between 90 and 0
degrees) are positively correlated

I Two vectors forming an obtuse angle (between 90 and 180
degrees) are negatively correlated
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Arithmetical Operations: Correlation

cosθ~x~y = ~x ·~y
|~x ||~y | = 7

5.099×2.236 = 0.614, about 52◦

Provides a much “cleaner” visualization of the relationship
between variables
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Vector Rotation

• A pair of vectors can be rotated by some angle θ by rigidly
turning them through this angle without altering the angle
between them

• Rotating a set of vectors changes their orientation to the
coordinate system you’re using, but not the angular
relationships between vectors or lengths of the vectors

• Essentially, the process is akin to looking at the vectors from a
new viewpoint

• Can think of rotation in terms of rotating the coordinate axes,
rather than the vectors

• Either way, the original vectors are multiplied by a rotation
vector comprised of direction cosines

I The resultant vector contains the coordinates in the rotated
space
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Vector Rotation

−0.4

0.0

0.6

0 1

45/61



Vector Rotation
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Vector Rotation
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Vector Rotation
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Vector Rotation

−0.4

0.0

0.6

0 1

Initial
(Unrotated)

Factor 1

Initial
(Unrotated)
Factor 2

49/61



Vector Rotation
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Vector Rotation
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Vector Rotation
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Regression with Vector Geometry

• The standard prediction equation for OLS regression:

Ŷ = a + bX

• Let’s think of Ŷ and X in terms of vectors, ~̂y and ~x
• Furthermore, let’s center the data (per usual in multivariate

stats) so we can drop the intercept and simplify:

~̂y = b~x

• Since ~̂y is a scalar multiple of ~x (via b), we know that ~̂y is
collinear to ~x

• Furthermore, unless ~x and ~y are perfectly collinear
(correlated), which would make the problem trivial, ~y points
in a different direction than ~x

• Objective: find the value b that would make ~y and ~̂y as
similar as possible, or:

~e = ~y − ~̂y
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Regression with Vector Geometry

~e must be orthogonal – uncorrelated – with ~̂y , which is collinear
with ~x

 

x ŷ
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Regression with Vector Geometry

• The orthogonality of ~e and ~x/~̂y let’s us calculate b

• When b is chosen correctly, the dot product ~x · ~e = 0

• We can use the previous equations substituting ~e with ~y − b~x :

~x · (~y − b~x) = 0

~x · ~y − b(~x · ~x) = 0

~x · ~y − b(|~x |2) = 0

b =
~x · ~y
|~x |2

• This is the vector geometric expression of the algebraic
bivariate regression coefficient:

b =

∑
xiyi∑
x2i
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Bivariate Regression: An Example

• Take the following vectors, for example:

I ~x = [−3,−3,−1,−1, 0, 0, 1, 2, 2, 3]′

I ~y = [−8,−5,−3, 0,−1, 0, 5, 1, 6, 5]′

• |~x |2 = 38, ~x · ~y = 76

b =
~x · ~y
|~x |2

=
76

38
= 2.00
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Bivariate Regression: An Example

b =
~x · ~y
|~x |2

=
76

38
= 2.00
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Goodness of Fit

The more highly correlated ~x is with ~y , the smaller the angle
between ~x and ~y , the greater the fit (in terms of b and R2):

y ~ x1
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b2
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Goodness of Fit

• We know that the cosine of the angle between two vectors
corresponds to the correlation

• We know that the squared correlation between x and y in a
bivariate regression is the R2

I Relatedly, we know that the correlation between ŷ and y , also
gives the R2

I And, ~̂y is collinear with ~x

• Thus, the R2 is the square of cosθ~x~y

• In this example:

cosθxy =
x · y
|x ||y |

= 0.903 −→ R2 = 0.817
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More Than One Independent Variable

• The bivariate case generalizes to as many dimensions as there
are variables in the model (assuming none are perfectly
collinear)

• Can’t really picture a case with more than three variables
(including the DV), but the math works

• In three dimensions (2 IVs and a DV):

I Think of ~x1 and ~x2 as occupying same subspace, a plane called
the “regression space”

I Since ~̂y is a linear combination of b1~x1 + b2~x2, ~̂y also resides in
the same “regression” subspace as ~x1 and ~x2

I ~e remains orthogonal to ~x1, ~x2, and ~̂y , but occupies another
subspace called the “error space”

I Still want to pick b1 and b2 so that the tip of ~̂y is directly
under ~y
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More Than One Independent Variable

• Can no longer calculate R2 as the square of cosθ~x~y

• Rather, we calculate goodness of fit as the length of ~̂y , |~̂y |

R = cosθ~̂y~y =
|~̂y |
|~y |

• The longer |~̂y |, the better the fit

• Standardized variables:

I Can standardize variables by subtracting their mean and
dividing by their standard deviation

I In a geometric sense, this has the effect of standardizing the
length of all variables to 1, or “unit length”

I Then, we can interpret regression coefficients as “a one
standard deviation increase in x leads to a xxxx standard
deviation decrease in y , on average”
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